Định lí Vi – ét cho phương trình đa thức bậc hai và đa thức bậc ba


Định lí Vi – ét cho phương trình đa thức bậc hai và đa thức bậc ba

Định lí Vi – ét cho phương trình đa thức bậc hai

Xét phương trình $a{{x}^{2}}+bx+c=0$ có hai nghiệm ${{x}_{1}},{{x}_{2}}$ khi đó $\left\{ \begin{array}{l} {x_1} + {x_2} = - \dfrac{b}{a}\\ {x_1}{x_2} = \dfrac{c}{a} \end{array} \right..$

Định lí Vi – ét cho phương trình đa thức bậc ba

Xét phương trình $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$ có ba nghiệm là ${{x}_{1}},{{x}_{2}},{{x}_{3}}$ khi đó $\left\{ \begin{array}{l} {x_1} + {x_2} + {x_3} = - \dfrac{b}{a}\\ {x_1}{x_2} + {x_2}{x_3} + {x_3}{x_1} = \dfrac{c}{a}\\ {x_1}{x_2}{x_3} = - \dfrac{d}{a} \end{array} \right..$

Định lí Vi - ét cho phương trình đa thức bậc n

Xét phương trình ${{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}=0,\left( {{a}_{n}}\ne 0 \right)$ có n nghiệm là ${{x}_{1}},{{x}_{2}},...,{{x}_{n}}$ thì $\sum\limits_{1\le {{i}_{1}}<{{i}_{2}}<...<{{i}_{k}}}{{{x}_{{{i}_{1}}}}{{x}_{{{i}_{2}}}}...{{x}_{{{i}_{k}}}}}={{\left( -1 \right)}^{k}}\dfrac{{{a}_{n-k}}}{{{a}_{n}}},k=1,2,...,n$

Hay dùng nhất là ${{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=-\dfrac{{{a}_{n-1}}}{{{a}_{n}}}$ và ${{x}_{1}}{{x}_{2}}...{{x}_{n}}={{\left( -1 \right)}^{n}}\dfrac{{{a}_{0}}}{{{a}_{n}}}.$

Chứng minh các định lí này thông qua phân tích một đa thức thành nhân tử khi biết các nghiệm của nó

Xét đa thức ${{P}_{n}}\left( x \right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}},\left( {{a}_{n}}\ne 0 \right)$ có n nghiệm là ${{x}_{1}},{{x}_{2}},...,{{x}_{n}}$ khi đó ${{P}_{n}}\left( x \right)={{a}_{n}}\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)...\left( x-{{x}_{n}} \right).$

Đối với đa thức bậc hai: ${{P}_{2}}\left( x \right)=a{{x}^{2}}+bx+c=a\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right),\forall x$

$\Leftrightarrow a{{x}^{2}}+bx+c=a\left[ {{x}^{2}}-\left( {{x}_{1}}+{{x}_{2}} \right)x+{{x}_{1}}{{x}_{2}} \right],\forall x$

$ \Leftrightarrow \left\{ \begin{gathered} - a\left( {{x_1} + {x_2}} \right) = b \hfill \\ a{x_1}{x_2} = c \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {x_1} + {x_2} = - \dfrac{b}{a} \hfill \\ {x_1}{x_2} = \dfrac{c}{a} \hfill \\ \end{gathered} \right.$

Đối với đa thức bậc ba: ${{P}_{3}}\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d=a\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)\left( x-{{x}_{3}} \right),\forall x$

$\Leftrightarrow a{{x}^{3}}+b{{x}^{2}}+cx+d=a\left[ {{x}^{3}}-\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right){{x}^{2}}+\left( {{x}_{1}}{{x}_{2}}+{{x}_{2}}{{x}_{3}}+{{x}_{3}}{{x}_{1}} \right)x-{{x}_{1}}{{x}_{2}}{{x}_{3}} \right],\forall x$

$ \Leftrightarrow \left\{ \begin{gathered} - a\left( {{x_1} + {x_2} + {x_3}} \right) = b \hfill \\ a\left( {{x_1}{x_2} + {x_2}{x_3} + {x_3}{x_1}} \right) = c \hfill \\ - a{x_1}{x_2}{x_3} = d \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {x_1} + {x_2} + {x_3} = - \dfrac{b}{a} \hfill \\ {x_1}{x_2} + {x_2}{x_3} + {x_3}{x_1} = \dfrac{c}{a} \hfill \\ {x_1}{x_2}{x_3} = - \dfrac{d}{a} \hfill \\ \end{gathered} \right..$

Combo 4 Khoá Luyện thi THPT Quốc Gia 2023 Môn Toán dành cho teen 2K5

Bình luận

Để bình luận, bạn cần đăng nhập bằng tài khoản Vted.

Đăng nhập
Đã ghim
PhanLê [76759] Đã mua 1 khóa học

thầy gợi ý chứng minh vi-ét bậc 3 cho e đc hông ạ?

 

1
Vted
Xem tất cả