Bài viết này Vted giới thiệu đến bạn đọc phương pháp Phân tích đa thức chứa tham số thành nhân tử dựa trên nghiệm của đa thức và hỗ trợ của máy tính bỏ túi
Đa thức $P(x)$ được viết dưới dạng: $P(x)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}$ trong đó ${{a}_{n}}\ne 0$ là một đa thức bậc $n$ ký hiệu là $\deg P=n$.
$P(x)$ có nghiệm ${{x}_{1}},{{x}_{2}},...,{{x}_{n}}$ thì $P(x)={{a}_{n}}\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)...\left( x-{{x}_{n}} \right).$
Giải.Vì $f(x)$ là một đa thức bậc ba có ba nghiệm $-3;-1;2$ do đó $f(x)=\dfrac{1}{2}(x+3)(x+1)(x-2).$
Giải.Vì $h(x)=a{{x}^{3}}+(b-d){{x}^{2}}+(c-e)x-\frac{1}{4}$ là một đa thức bậc ba có ba nghiệm $-2;1;3$ do đó $h(x)=a(x+2)(x-1)(x-3).$
So sánh hệ số tự do của $h(x)$ ta có $-\dfrac{1}{4}=a(2)(-1)(-3)\Leftrightarrow a=-\dfrac{1}{24}.$ Do đó $h(x)=-\dfrac{1}{24}(x+2)(x-1)(x-3).$
Đa thức bậc ba $P(x)=a{{x}^{3}}+b{{x}^{2}}+cx+d$ tìm được một nghiệm đẹp $x={{x}_{0}}$ khi đó $P(x)=a(x-{{x}_{0}})({{x}^{2}}+rx+s)$ để tìm nhân tử ${{x}^{2}}+rx+s$ ta thực hiện bằng máy tính bỏ túi như sau:
MODE 2 (Vào môi trường số phức)
Nhập $\dfrac{P(x)}{a(x-{{x}_{0}})}-{{x}^{2}}$ và CALC với $x=i(ENG)$ và tham số $m=1000$
Giải. Nhập phương trình bậc ba ${{x}^{3}}+(m+1){{x}^{2}}+({{m}^{2}}+2m-1)x-3{{m}^{3}}+3{{m}^{2}}+m-1=0$ ẩn $x$ với $m=1000$ ta được một nghiệm đẹp $x=999=m-1.$
Vậy khi phân tích nhân tử thì $P(x)=(x-m+1)({{x}^{2}}+rx+s)$ ta tìm $rx+s$ như sau:
MODE 2
Nhập $\dfrac{{{x}^{3}}+(m+1){{x}^{2}}+({{m}^{2}}+2m-1)x-3{{m}^{3}}+3{{m}^{2}}+m-1}{x-m+1}-{{x}^{2}}$
CALC với $x=i(ENG);m=1000$ ta được kết quả $2000i+2999999=2mx+3{{m}^{2}}-1.$
Vậy $rx+s=2mx+3{{m}^{2}}-1.$ Do đó $P(x)=(x-m+1)({{x}^{2}}+2mx+3{{m}^{2}}-1).$
Đa thức bậc bốn $P(x)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e$ có nghiệm kép $x={{x}_{0}}$ khi đó $P(x)=a{{(x-{{x}_{0}})}^{2}}({{x}^{2}}+rx+s)$ để tìm nhân tử ${{x}^{2}}+rx+s$ ta thực hiện như sau:
MODE 2(Vào môi trường số phức)
Nhập $\dfrac{P(x)}{a{{(x-{{x}_{0}})}^{2}}}-{{x}^{2}}$ và CALCvới $x=i(ENG)$ và tham số $m=1000$
Ví dụ 1:Phân tích thành nhân tử đa thức $P(x)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}-(4{{m}^{3}}-3{{m}^{2}}+2m)x+3{{m}^{4}}-2{{m}^{3}}+{{m}^{2}}.$
Giải. Đa thức $P(x)$ có nghiệm kép $x=m$ do đó $P(x)={{(x-m)}^{2}}({{x}^{2}}+rx+s)$ ta tìm $rx+s$ như sau:
MODE 2
Nhập $\dfrac{{{x}^{4}}-{{x}^{3}}+{{x}^{2}}-(4{{m}^{3}}-3{{m}^{2}}+2m)x+3{{m}^{4}}-2{{m}^{3}}+{{m}^{2}}}{{{(x-m)}^{2}}}-{{x}^{2}}$
CALC với $x=i(ENG);m=1000$ ta được kết quả $1999i+2998001=(2m-1)x+3{{m}^{2}}-2m+1.$
Vậy $rx+s=(2m-1)x+3{{m}^{2}}-2m+1.$ Vậy $P(x)={{(x-m)}^{2}}({{x}^{2}}+(2m-1)x+3{{m}^{2}}-2m+1).$
Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho VTED.vn, vui lòng gửi về:
cho em xin file pdf với ạ gamil maclenin2001@gmail.com
Cho em hỏi là phần Phân tích nhân tử cho đa thức bậc bốn có chứa tham số
sao biết được là pt có nghiệm kép ạ. như ở ví dụ em mới tìm được có nhân tử x=m, sao để kiểm tra nó có nhân tử (x-m)^2 ạ
Cho e xin link pdf aj
link in chỗ nào vậy ạ TT. giúp em với
cho em xin file pdf này với ạ