Giả sử ma trận $A$ khả nghịch (không suy biến) khi đó tồn tại ma trận nghịch đảo ${{A}^{-1}}$, ngoài các phép biến đổi sơ cấp hay tìm ma trận nghịch đảo theo công thức của ma trận phụ hợp ta có thể sử dụng phương pháp giải hệ phương trình:
Xét hệ phương trình tuyến tính $A\left( {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {...} \\ {{x_n}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{y_1}} \\ {{y_2}} \\ {...} \\ {{y_n}} \end{array}} \right).$
Ta biết rằng nghiệm của hệ phương trình này xác định bởi $\left( {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {...} \\ {{x_n}} \end{array}} \right) = {A^{ - 1}}\left( {\begin{array}{*{20}{c}} {{y_1}} \\ {{y_2}} \\ {...} \\ {{y_n}} \end{array}} \right).$ Vì vậy nếu tìm được nghiệm của hệ phương trình dạng $\left( {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {...} \\ {{x_n}} \end{array}} \right) = B\left( {\begin{array}{*{20}{c}} {{y_1}} \\ {{y_2}} \\ {...} \\ {{y_n}} \end{array}} \right) \Rightarrow {A^{ - 1}} = B.$
Câu 1. Tìm ma trận nghịch đảo của ma trận $A = \left( {\begin{array}{*{20}{c}} 1&0&{ - 1}&3 \\ 0&2&4&{ - 6} \\ 0&0&{ - 2}&3 \\ 0&0&0&{ - 1} \end{array}} \right).$
Xét hệ \[\left\{ \begin{gathered} {x_1} - {x_3} + 3{x_4} = {y_1} \hfill \\ 2{x_2} + 4{x_3} - 6{x_4} = {y_2} \hfill \\ - 2{x_3} + 3{x_4} = {y_3} \hfill \\ - {x_4} = {y_4} \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {x_1} = {y_1} - \dfrac{1}{2}{y_3} + \dfrac{3}{2}{y_4} \hfill \\ {x_2} = \dfrac{1}{2}{y_2} + {y_3} \hfill \\ {x_3} = - \dfrac{1}{2}{y_3} - \dfrac{3}{2}{y_4} \hfill \\ {x_4} = - {y_4} \hfill \\ \end{gathered} \right. \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}} 1&0&{ - \dfrac{1}{2}}&{\dfrac{3}{2}} \\ 0&{\dfrac{1}{2}}&1&0 \\ 0&0&{ - \dfrac{1}{2}}&{ - \dfrac{3}{2}} \\ 0&0&0&{ - 1} \end{array}} \right).\]
Câu 2. Tìm ma trận nghịch đảo của ma trận $A = \left( {\begin{array}{*{20}{c}} 1&{ - 2}&3&{ - 4} \\ 0&1&{ - 2}&3 \\ 0&0&1&{ - 2} \\ 0&0&0&1 \end{array}} \right).$
Xét hệ $\left\{ \begin{gathered} {x_1} - 2{x_2} + 3{x_3} - 4{x_4} = {y_1} \hfill \\ {x_2} - 2{x_3} + 3{x_4} = {y_2} \hfill \\ {x_3} - 2{x_4} = {y_3} \hfill \\ {x_4} = {y_4} \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {x_1} = {y_1} + 2{y_2} + {y_3} \hfill \\ {x_2} = {y_2} + 2{y_3} + {y_4} \hfill \\ {x_3} = {y_3} + 2{y_4} \hfill \\ {x_4} = {y_4} \hfill \\ \end{gathered} \right. \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}} 1&2&1&0 \\ 0&1&2&1 \\ 0&0&1&2 \\ 0&0&0&1 \end{array}} \right).$
Câu 3: Cho ma trận $A = \left( {\begin{array}{*{20}{c}} a&b&b&{...}&b \\ b&a&b&{...}&b \\ b&b&a&{...}&b \\ {...}&{...}&{...}&{...}&{...} \\ b&b&b&{...}&a \end{array}} \right).$
a) Tính $\det (A);$
b) Giả sử $\det (A)\ne 0,$ tìm ${{A}^{-1}}.$
Giải. a) Xem đề thi các phương pháp tính định thức ma trận.
b) Xét hệ phương trình tuyến tính $\left\{ \begin{gathered} a{x_1} + b{x_2} + ... + b{x_n} = {y_1} \hfill \\ b{x_1} + a{x_2} + ... + b{x_n} = {y_2} \hfill \\ ... \hfill \\ b{x_1} + b{x_2} + ... + a{x_n} = {y_n} \hfill \\ \end{gathered} \right..$ ta có $\left\{ \begin{gathered} (a - b){x_1} + bS = {y_1} \hfill \\ (a - b){x_2} + bS = {y_2} \hfill \\ ... \hfill \\ (a - b){x_n} + bS = {y_n} \hfill \\ \end{gathered} \right..$
Suy ra ${{x}_{k}}=\dfrac{{{y}_{k}}-bS}{a-b},k=1,2,...,n$ và cộng tất cả các phương trình của hệ có:
$\begin{gathered} (a - b)({x_1} + {x_2} + ... + {x_n}) + nbS = {y_1} + {y_2} + ... + {y_n} \hfill \\ \Leftrightarrow (a - b)S + nbS = {y_1} + {y_2} + ... + {y_n} \Leftrightarrow S = \dfrac{{{y_1} + {y_2} + ... + {y_n}}}{{a + (n - 1)b}}. \hfill \\ \end{gathered} $
Do đó ${{x}_{k}}=\dfrac{{{y}_{k}}-b\dfrac{{{y}_{1}}+{{y}_{2}}+...+{{y}_{n}}}{a+(n-1)b}}{a-b}=\dfrac{1}{(a-b)\left( a+(n-1)b \right)}\left( -b{{y}_{1}}-b{{y}_{2}}-(a+(n-2)b){{y}_{k}}-...-b{{y}_{n}} \right),k=1,2,...,n.$
Vì vậy ${A^{ - 1}} = \dfrac{1}{{(a - b)\left( {a + (n - 1)b} \right)}}\left( {\begin{array}{*{20}{c}} { - (a + (n - 2)b)}&{ - b}&{ - b}&{...}&{ - b} \\ { - b}&{ - (a + (n - 2)b)}&{ - b}&{...}&{ - b} \\ { - b}&{ - b}&{ - (a + (n - 2)b)}&{...}&{ - b} \\ {...}&{...}&{...}&{...}&{...} \\ { - b}&{ - b}&{ - b}&{...}&{ - (a + (n - 2)b)} \end{array}} \right).$
Câu 4: Tìm ma trận nghịch đảo của ma trận $A = \left( {\begin{array}{*{20}{c}} 1&1&1&1&0 \\ 1&0&1&1&1 \\ 1&1&0&1&1 \\ 1&1&1&1&0 \\ 0&1&1&1&1 \end{array}} \right).$
Xét hệ phương trình tuyến tính $\left\{ \begin{gathered} {x_1} + {x_2} + {x_3} + {x_4} = {y_1} \hfill \\ {x_1} + {x_3} + {x_4} + {x_5} = {y_2} \hfill \\ {x_1} + {x_2} + {x_4} + {x_5} = {y_3} \hfill \\ {x_1} + {x_2} + {x_3} + {x_4} = {y_4} \hfill \\ {x_2} + {x_3} + {x_4} + {x_5} = {y_5} \hfill \\ \end{gathered} \right..$
Giải hệ này bằng biến đổi ma trận hệ số mở rộng:
$\begin{gathered} \overline A = \left( {\begin{array}{*{20}{c}} 1&1&1&0&1&{{y_1}} \\ 1&0&1&1&1&{{y_2}} \\ 1&1&0&1&1&{{y_3}} \\ 1&1&1&0&1&{{y_4}} \\ 0&1&1&1&1&{{y_5}} \end{array}} \right)\xrightarrow{{}}\left( {\begin{array}{*{20}{c}} 1&1&1&0&1&{{y_1}} \\ 0&{ - 1}&0&1&0&{ - {y_1} + {y_2}} \\ 0&0&{ - 1}&1&0&{ - {y_1} + {y_3}} \\ 0&0&0&1&{ - 1}&{ - {y_1} + {y_4}} \\ 0&1&1&1&1&{{y_5}} \end{array}} \right) \hfill \\ \xrightarrow{{}}\left( {\begin{array}{*{20}{c}} 1&1&1&0&1&{{y_1}} \\ 0&{ - 1}&0&1&0&{ - {y_1} + {y_2}} \\ 0&0&{ - 1}&1&0&{ - {y_1} + {y_3}} \\ 0&0&0&1&{ - 1}&{ - {y_1} + {y_4}} \\ 0&0&1&2&1&{ - {y_1} + {y_2} + {y_5}} \end{array}} \right) \hfill \\ \xrightarrow{{}}\left( {\begin{array}{*{20}{c}} 1&1&1&0&1&{{y_1}} \\ 0&{ - 1}&0&1&0&{ - {y_1} + {y_2}} \\ 0&0&{ - 1}&1&0&{ - {y_1} + {y_3}} \\ 0&0&0&1&{ - 1}&{ - {y_1} + {y_4}} \\ 0&0&0&3&1&{ - 2{y_1} + {y_2} + {y_3} + {y_5}} \end{array}} \right) \hfill \\ \xrightarrow{{}}\left( {\begin{array}{*{20}{c}} 1&1&1&0&1&{{y_1}} \\ 0&{ - 1}&0&1&0&{ - {y_1} + {y_2}} \\ 0&0&{ - 1}&1&0&{ - {y_1} + {y_3}} \\ 0&0&0&1&{ - 1}&{ - {y_1} + {y_4}} \\ 0&0&0&0&4&{{y_1} + {y_2} + {y_3} - 3{y_4} + {y_5}} \end{array}} \right) \hfill \\ \end{gathered} $
Vậy $\left\{ \begin{gathered} {x_1} = \dfrac{1}{4}{y_1} + \dfrac{1}{4}{y_2} + \dfrac{1}{4}{y_3} + \dfrac{1}{4}{y_4} - \dfrac{3}{4}{y_5} \hfill \\ {x_2} = \dfrac{1}{4}{y_1} - \dfrac{3}{4}{y_2} + \dfrac{1}{4}{y_3} + \dfrac{1}{4}{y_4} + \dfrac{1}{4}{y_5} \hfill \\ {x_3} = \dfrac{1}{4}{y_1} + \dfrac{1}{4}{y_2} - \dfrac{3}{4}{y_3} + \dfrac{1}{4}{y_4} + \dfrac{1}{4}{y_5} \hfill \\ {x_4} = - \dfrac{3}{4}{y_1} + \dfrac{1}{4}{y_2} + \dfrac{1}{4}{y_3} + \dfrac{1}{4}{y_4} + \dfrac{1}{4}{y_5} \hfill \\ {x_5} = \dfrac{1}{4}{y_1} + \dfrac{1}{4}{y_2} + \dfrac{1}{4}{y_3} - \dfrac{3}{4}{y_4} + \dfrac{1}{4}{y_5} \hfill \\ \end{gathered} \right. \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}} {\dfrac{1}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}}&{ - \dfrac{3}{4}} \\ {\dfrac{1}{4}}&{ - \dfrac{3}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}} \\ {\dfrac{1}{4}}&{\dfrac{1}{4}}&{ - \dfrac{3}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}} \\ { - \dfrac{3}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}} \\ {\dfrac{1}{4}}&{\dfrac{1}{4}}&{\dfrac{1}{4}}&{ - \dfrac{3}{4}}&{\dfrac{1}{4}} \end{array}} \right).$
Câu 5. Tìm ma trận nghịch đảo của ma trận $A = \left( {\begin{array}{*{20}{c}} { - 1}&1&1&{...}&1 \\ 1&{ - 5}&1&{...}&1 \\ 1&1&{ - 11}&{...}&1 \\ {...}&{...}&{...}&{...}&{...} \\ 1&1&1&{...}&{ - n(n + 1) + 1} \end{array}} \right).$
Hiện tại Vted.vn xây dựng 2 khoá học Toán cao cấp 1 và Toán cao cấp 2 dành cho sinh viên năm nhất hệ Cao đẳng, đại học khối ngành Kinh tế của tất cả các trường:
Sinh viên các trường ĐH sau đây có thể học được combo này:
- ĐH Kinh Tế Quốc Dân
- ĐH Ngoại Thương
- ĐH Thương Mại
- Học viện Tài Chính
- Học viện ngân hàng
- ĐH Kinh tế ĐH Quốc Gia Hà Nội
và các trường đại học, ngành kinh tế của các trường ĐH khác trên khắp cả nước...
Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho VTED.vn, vui lòng gửi về: