[Vted.vn] - Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất


Bài viết này Vted thống kê cho bạn đọc Các bất đẳng thức cơ bản như BĐT AM - GM (Côsi), BĐT Cauchy - Schwarz (Bunhiacopsky), BĐT chứa căn thức, BĐT Mincopsky (Véctơ) cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất:

  1. Bất đẳng thức có được từ hằng đẳng thức dạng ${{(a-b)}^{2}}\ge 0$

  • ${{a}^{2}}+{{b}^{2}}\ge 2ab;ab\le {{\left( \frac{a+b}{2} \right)}^{2}};{{a}^{2}}+{{b}^{2}}\ge \frac{1}{2}{{(a+b)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $a=b.$
  • ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}\ge ab+bc+ca.$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
  • ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}\ge \frac{1}{3}{{(a+b+c)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
  • ${{(a+b+c)}^{2}}\ge 3(ab+bc+ca).$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
  1. Bất đẳng thức với hai căn thức cơ bản

  • $\sqrt{a}+\sqrt{b}\ge \sqrt{a+b}.$ Dấu bằng xảy ra khi và chỉ khi $a=0$ hoặc $b=0.$
  • $\sqrt{a}+\sqrt{b}\le \sqrt{2(a+b)}.$ Dấu bằng xảy ra khi và chỉ khi $a=b.$

 

Ví dụ 1:Cho hai số thực $x,y$ thoả mãn $x+y=2\left( \sqrt{x-3}+\sqrt{y+3} \right).$ Tìm giá trị nhỏ nhất của biểu thức $P=4({{x}^{2}}+{{y}^{2}})+15xy.$

A. $\min P=-80.$

B. $\min P=-91.$

C. $\min P=-83.$

D. $\min P=-63.$

Giải.Ta có $x+y=2\left( \sqrt{x-3}+\sqrt{y+3} \right)\ge 2\sqrt{(x-3)+(y+3)}=2\sqrt{x+y}.$ Suy ra $x+y=0$ hoặc $x+y\ge 4.$  

Và $x+y=2\left( \sqrt{x-3}+\sqrt{y+3} \right)\le 2\sqrt{\left( 1+1 \right)\left( x-3+y+3 \right)}=2\sqrt{2(x+y)}\Rightarrow x+y\le 8.$

  • Nếu $x+y=0\Leftrightarrow x=3;y=-3\Rightarrow P=-63.$
  • Nếu $x+y\in [4;8],$ xuất phát từ điều kiện xác định căn thức ta có: \[(x-3)(y+3)\ge 0\Rightarrow xy\ge 3(y-x)+9.\]

Suy ra 

    \[\begin{array}{c} P = 4{x^2} + 4{y^2} + 15xy = 4{(x + y)^2} + 7xy \ge 4{(x + y)^2} + 7\left[ {3(y - x) + 9} \right]\\ = \left[ {4{{(x + y)}^2} - 21(x + y)} \right] + \left( {42y + 63} \right)\\ \ge \left( {{{4.4}^2} - 21.4} \right) + \left( {42.( - 3) + 63} \right) = - 83. \end{array}\]

Dấu bằng đạt tại $x=7,y=-3.$ Đối chiếu hai trường hợp ta Chọn đáp án C. 

*Chú ý: Hàm số $y=4{{t}^{2}}-21t$ đồng biến trên đoạn $[4;8]$ nên ta có đánh giá $4{{(x+y)}^{2}}-21(x+y)\ge {{4.4}^{2}}-21.4.$

  1. Bất đẳng thức AM – GM (Sách giáo khoa việt nam gọi là bất đẳng thức Côsi)

  • Với hai số thực không âm ta có $a+b\ge 2\sqrt{ab}.$ Dấu bằng xảy ra khi và chỉ khi $a=b.$
  • Với ba số thực không âm ta có $a+b+c\ge 3\sqrt[3]{abc}.$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
  • Với $n$ thực không âm ta có ${{a}_{1}}+{{a}_{2}}+...+{{a}_{n}}\ge n\sqrt[n]{{{a}_{1}}{{a}_{2}}...{{a}_{n}}}.$ Dấu bằng xảy ra khi và chỉ khi ${{a}_{1}}={{a}_{2}}=...={{a}_{n}}.$

Ví dụ 1:Cho $a>0;b>0$ thoả mãn ${{\log }_{2a+2b+1}}(4{{a}^{2}}+{{b}^{2}}+1)+{{\log }_{4ab+1}}(2a+2b+1)=2.$ Giá trị biểu thức $a+2b$ bằng

A. $\frac{3}{2}.$

B. $5.$

C. $4.$

D. $\frac{15}{4}.$

Giải. Chú ý ${{\log }_{a}}b=\dfrac{\ln b}{\ln a}.$ Vậy $\dfrac{\ln \left( 4{{a}^{2}}+{{b}^{2}}+1 \right)}{\ln \left( 2a+2b+1 \right)}+\dfrac{\ln \left( 2a+2b+1 \right)}{\ln \left( 4ab+1 \right)}=2.$

Sử dụng AM – GM có

$\dfrac{\ln \left( 4{{a}^{2}}+{{b}^{2}}+1 \right)}{\ln \left( 2a+2b+1 \right)}+\dfrac{\ln \left( 2a+2b+1 \right)}{\ln \left( 4ab+1 \right)}\ge 2\sqrt{\dfrac{\ln (4{{a}^{2}}+{{b}^{2}}+1)}{\ln (4ab+1)}}.$

Mặt khác $4{{a}^{2}}+{{b}^{2}}\ge 2\sqrt{4{{a}^{2}}.{{b}^{2}}}=4ab\Rightarrow 4{{a}^{2}}+{{b}^{2}}+1\ge 4ab+1\Rightarrow \dfrac{\ln (4{{a}^{2}}+{{b}^{2}}+1)}{\ln \left( 4ab+1 \right)}\ge 1.$

Do đó dấu bằng phải xảy ra tức \[\left\{ \begin{array}{l} 2a = b\\ \frac{{\ln \left( {2a + 2b + 1} \right)}}{{\ln \left( {4ab + 1} \right)}} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \ln (6a + 1) = \ln (8{a^2} + 1)\\ b = 2a \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{3}{4}\\ b = \frac{3}{2} \end{array} \right..\]

Do đó $a+2b=\frac{3}{4}+3=\frac{15}{4}.$ Chọn đáp án D.   

Ví dụ 2:Cho các số thực dương $x,y,z.$ Biết giá trị nhỏ nhất của biểu thức $P=\dfrac{{{x}^{2}}}{y}+\dfrac{{{y}^{2}}}{4z}+\dfrac{{{z}^{2}}}{x}+\dfrac{175\sqrt{{{x}^{2}}+9}}{4(x+1)}$ là $\dfrac{a}{b}$ với $a,b$ là các số nguyên dương và $\frac{a}{b}$ tối giản. Tính $S=a+b.$

A. $S=52.$

B. $S=207.$

C. $S=103.$

D. $S=205.$

Giải.Ta đánh giá ba số hạng đầu để mất biến y và z bằng cách sử dụng bất đẳng thức AM – GM ta có

$\dfrac{{{z}^{2}}}{x}+\dfrac{{{y}^{2}}}{8z}+\dfrac{{{y}^{2}}}{8z}+\dfrac{{{x}^{2}}}{4y}+\dfrac{{{x}^{2}}}{4y}+\dfrac{{{x}^{2}}}{4y}+\dfrac{{{x}^{2}}}{4y}\ge 7\sqrt[7]{\dfrac{{{z}^{2}}}{x}{{\left( \dfrac{{{y}^{2}}}{8z} \right)}^{2}}{{\left( \dfrac{{{x}^{2}}}{4y} \right)}^{4}}}=\dfrac{7x}{4}.$

Vậy $P\ge f(x)=\dfrac{7x}{4}+\dfrac{175\sqrt{{{x}^{2}}+9}}{4(x+1)}\ge \underset{(0;+\infty )}{\mathop{\min }}\,f(x)=f(4)=\dfrac{203}{4}.$ Chọn đáp án B.

Dấu bằng đạt tại $\left\{ \begin{align}&\dfrac{{{z}^{2}}}{x}=\dfrac{{{y}^{2}}}{8z}=\dfrac{{{x}^{2}}}{4y}, \\ & x=4 \\ \end{align} \right.\Leftrightarrow (x;y;z)=(4;4;2).$

Ví dụ 3.Cho các số thực $a,b,c$ lớn hơn $1$ thoả mãn ${{\log }_{a}}bc+{{\log }_{b}}ca+4{{\log }_{c}}ab=10.$ Tính giá trị biểu thức $P={{\log }_{a}}b+{{\log }_{b}}c+{{\log }_{c}}a.$

A. $P=5.$

B. $P=\frac{7}{2}.$

C. $P=\frac{21}{4}.$

D. $P=\frac{9}{2}.$

Giải. Chú ý biến đổi logarit ${{\log }_{a}}xy={{\log }_{a}}x+{{\log }_{a}}y(x>0,y>0),0<a\ne 1.$

Vậy đẳng thức giả thiết tương đương với:

                                                                \[\begin{array}{l} {\log _a}b + {\log _a}c + {\log _b}c + {\log _b}a + 4\left( {{{\log }_c}a + {{\log }_c}b} \right) = 10\\ \Leftrightarrow \left( {{{\log }_a}b + {{\log }_b}a} \right) + \left( {{{\log }_b}c + 4{{\log }_c}b} \right) + \left( {4{{\log }_c}a + {{\log }_a}c} \right) = 10. \end{array}\]

Do $a,b,c$ lớn hơn $1$ nên ${{\log }_{a}}b>0;{{\log }_{b}}c>0;{{\log }_{c}}a>0$ và để ý tính chất ${{\log }_{x}}y.{{\log }_{y}}x=1\left( 0<x,y\ne 1 \right)$  

Sử dụng bất đẳng thức AM – GM ta có:

                                                                    \[\begin{array}{l} {\log _a}b + {\log _b}a \ge 2\sqrt {{{\log }_a}b.{{\log }_b}a} = 2\\ {\log _b}c + 4{\log _c}b \ge 2\sqrt {{{\log }_b}c.4{{\log }_c}b} = 4\\ 4{\log _c}a + {\log _a}c \ge 2\sqrt {4{{\log }_c}a.{{\log }_a}c} = 4 \end{array}\]

Cộng lại theo vế ta có:  \[\left( {{\log }_{a}}b+{{\log }_{b}}a \right)+\left( {{\log }_{b}}c+4{{\log }_{c}}b \right)+\left( 4{{\log }_{c}}a+{{\log }_{a}}c \right)\ge 10.\]

Điều đó chứng tỏ phải xảy ra dấu bằng  trong các bất đẳng thức AM – GM

Dấu bằng đạt tại \[\left\{ \begin{array}{l} {\log _a}b = {\log _b}a = 1\\ {\log _b}c = 4{\log _c}b = 2\\ 4{\log _c}a = {\log _a}c = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\log _a}b = 1\\ {\log _b}c = 2\\ {\log _c}a = \frac{1}{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = b\\ c = {b^2}\\ a = \sqrt c \end{array} \right. \Leftrightarrow a = b,c = {b^2}.\] Chọn đáp án B.

Ví dụ 4.Có tất cả bao nhiêu bộ ba số thực $(x;y;z)$ thoả mãn đồng thời các điều kiện dưới đây

\[{{2}^{\sqrt[3]{{{x}^{2}}}}}{{.4}^{\sqrt[3]{{{y}^{2}}}}}{{.16}^{\sqrt[3]{{{z}^{2}}}}}=128\] và ${{\left( x{{y}^{2}}+{{z}^{4}} \right)}^{2}}=4+{{\left( x{{y}^{2}}-{{z}^{4}} \right)}^{2}}.$

A. $8.$

B. $4.$

C. $3.$

D. $2.$

Giải. Ta có \[{{2}^{\sqrt[3]{{{x}^{2}}}}}{{.4}^{\sqrt[3]{{{y}^{2}}}}}{{.16}^{\sqrt[3]{{{z}^{2}}}}}=128\Leftrightarrow {{2}^{\sqrt[3]{{{x}^{2}}}+2\sqrt[3]{{{y}^{2}}}+4\sqrt[3]{{{z}^{2}}}}}={{2}^{7}}\Leftrightarrow \sqrt[3]{{{x}^{2}}}+2\sqrt[3]{{{y}^{2}}}+4\sqrt[3]{{{z}^{2}}}=7.\]

Khai thác điều kiện số 2, ta có

\[{{x}^{2}}{{y}^{4}}+2x{{y}^{2}}{{z}^{4}}+{{z}^{8}}=4+{{x}^{2}}{{y}^{4}}-2x{{y}^{2}}{{z}^{4}}+{{z}^{8}}\Leftrightarrow x{{y}^{2}}{{z}^{4}}=1.\]

Mặt khác theo bất đẳng thức AM – GM cho 7 số thực dương ta có

\[\sqrt[3]{{{x}^{2}}}+2\sqrt[3]{{{y}^{2}}}+4\sqrt[3]{{{z}^{2}}}\ge 7\sqrt[7]{\sqrt[3]{{{x}^{2}}}{{\left( \sqrt[3]{{{y}^{2}}} \right)}^{2}}{{\left( \sqrt[3]{{{z}^{2}}} \right)}^{4}}}=7\sqrt[7]{\sqrt[3]{{{x}^{2}}{{y}^{4}}{{z}^{8}}}}=7\sqrt[7]{\sqrt[3]{{{\left( x{{y}^{2}}{{z}^{4}} \right)}^{2}}}}=7.\]

Do đó dấu bằng phải xảy ra tức \[\left\{ \begin{array}{l} \sqrt[3]{{{x^2}}} = \sqrt[3]{{{y^2}}} = \sqrt[3]{{{z^2}}} = 1\\ x{y^2}{z^4} = 1 \end{array} \right. \Leftrightarrow x = 1;y,z \in \left\{ { - 1;1} \right\}.\]

Mỗi số $y,z$ có 2 cách vậy có tất cả ${{1.2}^{2}}=4$ bộ số thực thoả mãn. Chọn đáp án B.

  1. Bất đẳng thức Cauchy – Schwarz (Sách giáo khoa việt nam gọi là bất đẳng thức Bunhiacopsky)

  • Ta luôn có $({{a}^{2}}+{{b}^{2}})({{x}^{2}}+{{y}^{2}})\ge {{(ax+by)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{a}{x}=\frac{b}{y}.$

Ta hay sử dụng: $-\sqrt{({{a}^{2}}+{{b}^{2}})({{x}^{2}}+{{y}^{2}})}\le ax+by\le \sqrt{({{a}^{2}}+{{b}^{2}})({{x}^{2}}+{{y}^{2}})}.$

Dấu bằng bên phải đạt tại $\frac{a}{x}=\frac{b}{y}=k>0;$ dấu bằng bên trái đạt tại $\frac{a}{x}=\frac{b}{y}=k<0.$

  • Ta luôn có $({{a}^{2}}+{{b}^{2}}+{{c}^{2}})({{x}^{2}}+{{y}^{2}}+{{z}^{2}})\ge {{(ax+by+cz)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}.$
  •  Ta luôn có $(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2})(x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2})\ge {{({{a}_{1}}{{x}_{1}}+{{a}_{2}}{{x}_{2}}+...+{{a}_{n}}{{x}_{n}})}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{{{a}_{1}}}{{{x}_{1}}}=\frac{{{a}_{2}}}{{{x}_{2}}}=...=\frac{{{a}_{n}}}{{{x}_{n}}}.$

Ví dụ 1:Cho hai số thực $x,y$ thoả mãn ${{x}^{2}}+{{y}^{2}}\le 2x+3y.$ Giá trị lớn nhất của biểu thức $2x+y$ bằng

A. $\frac{19+\sqrt{19}}{2}.$

B. $\frac{7+\sqrt{65}}{2}.$

C. $\frac{11+10\sqrt{2}}{3}.$

D. $\frac{7-\sqrt{10}}{2}.$

Giải. Ta có biến đổi giả thiết: ${{x}^{2}}-2x+{{y}^{2}}-3y\le 0\Leftrightarrow {{(x-1)}^{2}}+{{\left( y-\frac{3}{2} \right)}^{2}}\le \frac{13}{4}.$

Khi đó $2x+y=2(x-1)+\left( y-\frac{3}{2} \right)+\frac{7}{2}\le \sqrt{\left( {{2}^{2}}+{{1}^{2}} \right)\left( {{(x-1)}^{2}}+{{\left( y-\frac{3}{2} \right)}^{2}} \right)}+\frac{7}{2}\le \sqrt{5.\frac{13}{4}}+\frac{7}{2}=\frac{7+\sqrt{65}}{2}.$

Dấu bằng đạt tại \(\left\{ \begin{array}{l} \frac{{x - 1}}{2} = \frac{{y - \frac{3}{2}}}{1} = k&gt;0\\ 2x + y = \frac{{7 + \sqrt {65} }}{2} \end{array} \right. \Leftrightarrow x = \frac{{5 + \sqrt {65} }}{5};y = \frac{{15 + \sqrt {65} }}{{10}}.\) Chọn đáp án B.

Ví dụ 2: Cho các số thực $x,y,z$ thoả mãn ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-12\le 0.$ Giá trị lớn nhất của biểu thức $2x+3y-2z$ bằng

A. $17.$

B. $25.$

C. $21.$

D. $24.$

Giải. Biến đổi giả thiết có ${{(x-2)}^{2}}+{{(y+1)}^{2}}+{{z}^{2}}\le 17.$

Khi đó

\(\begin{array}{c} 2x + 3y - 2z = \left( {2(x - 2) + 3(y + 1) - 2z} \right) + 4\\ \le \sqrt {\left( {{2^2} + {3^2} + {{( - 2)}^2}} \right)\left( {{{(x - 2)}^2} + {{(y - 1)}^2} + {z^2}} \right)} + 4 \le \sqrt {17.17} + 4 = 21. \end{array}\)

Dấu bằng đạt tại \(\left\{ \begin{array}{l} \frac{{x - 2}}{2} = \frac{{y + 1}}{3} = \frac{z}{{ - 2}}\\ 2x + 3y - 2z = 21 \end{array} \right. \Leftrightarrow x = \frac{{74}}{{17}},y = \frac{{43}}{{17}},z = - \frac{{40}}{{17}}.\) Chọn đáp án C.

Ví dụ 3. Cho hai số thực $x,y$ thay đổi thoả mãn $x+y=\sqrt{x-1}+\sqrt{2y+2}.$ Gọi $a,b$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S={{x}^{2}}+{{y}^{2}}+2(x+1)(y+1)+8\sqrt{4-x-y}.$ Tính $P=a+b.$

A. $P=44.$

B. $P=41.$

C. $P=43.$

D. $P=42.$

Giải. Ta có $x+y=\sqrt{x-1}+\sqrt{2(y+1)}\le \sqrt{3(x+y)}\Rightarrow t=x+y\in [0;3].$

Khi đó

$\begin{align}& S={{(x+y)}^{2}}+2(x+y)+8\sqrt{4-x-y}+2 \\& =f(t)={{t}^{2}}+2t+8\sqrt{4-t}+2\in [18;25],\forall t\in [0;3]\Rightarrow P=18+25=43. \end{align}$

Chọn đáp án C.

Ví dụ 4: Số phức $z$ thoả mãn $\left| z+1-2i \right|=2\sqrt{2},$ giá trị lớn nhất của biểu thức $a\left| z-1 \right|+b\left| z+3-4i \right|,\left( a,b>0 \right)$ bằng

Giải. Đặt $z=x+yi\Rightarrow \left| z+1-2i \right|=2\sqrt{2}\Leftrightarrow {{(x+1)}^{2}}+{{(y-2)}^{2}}=8.$

Khi đó sử dụng bất đẳng thức Cauchy – Schwarz có

$\begin{gathered} P = a\sqrt {{{(x - 1)}^2} + {y^2}} + b\sqrt {{{(x + 3)}^2} + {{(y - 4)}^2}} \leqslant \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{{\left( {x - 1} \right)}^2} + {y^2} + {{\left( {x + 3} \right)}^2} + {{\left( {y - 4} \right)}^2}} \right)} \\ = \sqrt {\left( {{a^2} + {b^2}} \right)\left( {2{x^2} + 2{y^2} + 4x - 8y + 26} \right)} = \sqrt {2\left( {{a^2} + {b^2}} \right)\left( {{{\left( {x + 1} \right)}^2} + {{\left( {y - 2} \right)}^2} + 8} \right)} \\ = \sqrt {2\left( {{a^2} + {b^2}} \right)\left( {8 + 8} \right)} = 4\sqrt {2\left( {{a^2} + {b^2}} \right)} . \\ \end{gathered} $

Chọn đáp án B.

  1. Bất đẳng thức Cauchy – Schwarz dạng phân thức

Với các số thực dương ${{x}_{1}},{{x}_{2}},...,{{x}_{n}}$ ta luôn có $\dfrac{a_{1}^{2}}{{{x}_{1}}}+\dfrac{a_{2}^{2}}{{{x}_{2}}}+...+\dfrac{a_{n}^{2}}{{{x}_{n}}}\ge \frac{{{({{a}_{1}}+{{a}_{2}}+...+{{a}_{n}})}^{2}}}{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}.$ Dấu bằng đạt tại $\dfrac{{{a}_{1}}}{{{x}_{1}}}=\dfrac{{{a}_{2}}}{{{x}_{2}}}=...=\dfrac{{{a}_{n}}}{{{x}_{n}}}.$

Ví dụ 1: Cho hàm số $y={{(x+m)}^{3}}+{{(x+n)}^{3}}+{{(x+p)}^{3}}-{{x}^{3}},$ có đồ thị $(C).$ Tiếp tuyến của $(C)$ tại điểm có hoành độ $x=1$ có hệ số góc nhỏ nhất. Giá trị nhỏ nhất của biểu thức ${{m}^{2}}+2{{n}^{2}}+3{{p}^{2}}$ bằng

A. $\frac{12}{11}.$

B. $\frac{96}{11}.$

C. $\frac{48}{11}.$

D. $\frac{24}{11}.$

Giải. Hệ số góc của tiếp tuyến là

 $k={y}'=3{{(x+m)}^{2}}+3{{(x+n)}^{2}}+3{{(x+p)}^{2}}-3{{x}^{2}}=6{{x}^{2}}+6(m+n+p)x+3{{m}^{2}}+3{{n}^{2}}+3{{p}^{2}}$ đạt giá trị nhỏ nhất tại $x=-\frac{6(m+n+p)}{2.6}=-\frac{m+n+p}{2}.$ Theo giả thiết có  $-\frac{m+n+p}{2}=1\Leftrightarrow m+n+p=-2.$

Khi đó theo bất đẳng thức Cauchy – Schwarz dạng phân thức ta có:

${{m}^{2}}+2{{n}^{2}}+3{{p}^{2}}=\dfrac{{{m}^{2}}}{1}+\dfrac{{{n}^{2}}}{\frac{1}{2}}+\dfrac{{{p}^{2}}}{\dfrac{1}{3}}\ge \dfrac{{{(m+n+p)}^{2}}}{1+\dfrac{1}{2}+\frac{1}{3}}=\dfrac{4}{1+\dfrac{1}{2}+\dfrac{1}{3}}=\dfrac{24}{11}.$

Dấu bằng đạt tại \(\left\{ \begin{array}{l} m + n + p = - 2\\ \dfrac{m}{1} = \dfrac{n}{{\frac{1}{2}}} = \dfrac{p}{{\dfrac{1}{3}}} \end{array} \right. \Leftrightarrow m = - \dfrac{{12}}{{11}},n = - \dfrac{6}{{11}},p = - \dfrac{4}{{11}}.\) Chọn đáp án D.

Ví dụ 2: Cho các số thực $x,y,z$ thoả mãn $xy+yz+zx=1.$ Giá trị nhỏ nhất của biểu thức $3{{x}^{2}}+4{{y}^{2}}+5{{z}^{2}}$ gần nhất với kết quả nào dưới đây ?

A. $1,33.$

C. $3,89.$

B. $1,94.$

D. $2,67.$

Giải. Ta đánh giá: $3{{x}^{2}}+4{{y}^{2}}+5{{z}^{2}}\ge 2k(xy+yz+zx)\Leftrightarrow (k+3){{x}^{2}}+(k+4){{y}^{2}}+(k+5){{z}^{2}}\ge k{{(x+y+z)}^{2}}.$

Trong đó $k$ là một hằng số dương được chọn sau, khi đó giá trị nhỏ nhất của biểu thức  $3{{x}^{2}}+4{{y}^{2}}+5{{z}^{2}}$ bằng $2k.$

Sử dụng bất đẳng thức Cauchy – Schwarz dạng phân thức ta có:

$(k+3){{x}^{2}}+(k+4){{y}^{2}}+(k+5){{z}^{2}}=\dfrac{{{x}^{2}}}{\frac{1}{k+3}}+\dfrac{{{y}^{2}}}{\frac{1}{k+4}}+\dfrac{{{z}^{2}}}{\frac{1}{k+5}}\ge \dfrac{{{(x+y+z)}^{2}}}{\dfrac{1}{k+3}+\dfrac{1}{k+4}+\dfrac{1}{k+5}}.$

Vậy hằng số $k$ cần tìm là nghiệm dương của phương trình $\dfrac{1}{\dfrac{1}{k+3}+\dfrac{1}{k+4}+\dfrac{1}{k+5}}=k\Leftrightarrow {{k}^{3}}+6{{k}^{2}}-30=0\Rightarrow k\approx 1,9434.$ Do vậy chọn đáp án C.

  1. Bất đẳng thức Mincopski (bất đẳng thức véctơ)

  • $\sqrt{{{a}^{2}}+{{b}^{2}}}+\sqrt{{{m}^{2}}+{{n}^{2}}}\ge \sqrt{{{(a+m)}^{2}}+{{(b+n)}^{2}}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{a}{m}=\frac{b}{n}=k>0.$

Ví dụ 1:Giá trị nhỏ nhất của biểu thức $\sqrt{{{(x-1)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}+\left| y-2 \right|$ bằng

A. $\sqrt{5}.$

B. $2.$

C. $2+\sqrt{3}.$

D. $\frac{4+\sqrt{3}}{2}.$

Giải.Sử dụng bất đẳng thức Mincopsky ta có

\(\begin{array}{c} \sqrt {{{(x - 1)}^2} + {y^2}} + \sqrt {{{(x + 1)}^2} + {y^2}} = \sqrt {{{(x - 1)}^2} + {y^2}} + \sqrt {{{( - x - 1)}^2} + {y^2}} \\ \ge \sqrt {{{(x - 1 - x - 1)}^2} + {{(y + y)}^2}} = \sqrt {4{y^2} + 4} = 2\sqrt {{y^2} + 1} . \end{array}\)

Do đó  $\sqrt{{{(x-1)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}+\left| y-2 \right|\ge f(y)=2\sqrt{{{y}^{2}}+1}+\left| y-2 \right|\ge \underset{\mathbb{R}}{\mathop{\min }}\,f(y)=f\left( \frac{1}{\sqrt{3}} \right)=2+\sqrt{3}.$

Dấu bằng đạt tại \(\left\{ \begin{array}{l} \frac{{x - 1}}{{ - x - 1}} = \frac{y}{y}\\ y = \frac{1}{{\sqrt 3 }} \end{array} \right. \Leftrightarrow x = 0;y = \frac{1}{{\sqrt 3 }}.\) Chọn đáp án C.

Bạn đọc cần bản PDF của bài viết này hãy để lại Bình luận trong phần Bình luận ngay bên dưới Bài viết này Vted sẽ gửi cho các bạn

>>Xem thêm Cập nhật Đề thi thử tốt nghiệp THPT 2023 môn Toán có lời giải chi tiết

Combo X Luyện thi 2025 Môn Toán (THPT, ĐG năng lực, ĐG tư duy) (2K7 – Chương trình SGK mới)

Link đăng ký: https://bit.ly/45sFkXS

PRO X: Luyện thi THPT 2025 Môn Toán (Luyện mọi dạng bài từ cơ bản đến 9 điểm)

XMAX: Luyện mọi dạng bài vận dụng cao Môn Toán 2025 (Mức 9+)

LIVE X: Tổng ôn kiến thức và chữa đề thi THPT 2025 Môn Toán (100 ngày)

Đăng ký cả Combo giảm trực tiếp 532.000 đồng học phí đến lúc thi chỉ còn: 2.268.000 đồng

Đăng ký cả Combo đối với học sinh đã tham gia các khoá PRO X11 giảm trực tiếp 800.000 đồng học phí đến lúc thi chỉ còn 2.000.000 đồng

Đăng ký cả Combo được tặng khoá học: XPLUS: LUYỆN GIẢI ĐỀ THI THPT 2024 MÔN TOÁN

Gồm khoảng 200 đề thi thử chọn lọc của các trường, sở giáo dục các năm gần đây và Bộ đề dự đoán do trực tiếp thầy Đặng Thành Nam biên soạn các năm 2024, 2023. Tất cả các đề đều có thi online tại Vted.vn và Lời giải chi tiết, một số đề gồm cả Video Live chữa đề.

Đăng ký cả Combo học sinh được tham gia nhóm LIVE: được học Livestream một số bài giảng chuyên đề của khoá PRO X, Vận dụng cao XMAX và Live Chữa đề ôn tập theo từng chủ đề, tổng kết chương và học kì. Thầy Nam bắt đầu Live vào đầu tháng 8, mỗi tuần hai buổi vào tối thứ 3 và thứ 5 hàng tuần.

Nhóm Live Combo X Luyện thi 2025 Môn Toán (2K7 - Chương trình SGK mới)

Khoá học PRO X và XMAX khai giảng từ ngày 20/06/2024 và Khoá học LIVE X khai giảng dự kiến 100 ngày trước thi hoặc sớm hơn vào tháng 12/2024.

Khoá học Biên soạn dựa trên:

Sách giáo khoa Toán 12 (tập 1, tập 2) (Kết Nối Tri Thức Với Cuộc Sống) - NXB GD Việt Nam

Sách giáo khoa Toán 12 (tập 1, tập 2) (Chân Trời Sáng Tạo) - NXB GD Việt Nam

Sách giáo khoa Toán 12 (tập 1, tập 2) (Cánh Diều) - NXB ĐH Sư Phạm

Các khoá học được sử dụng kể từ ngày đăng kí đến khi kì thi THPT 2025 kết thúc.

>>Xem thêm Tổng hợp các công thức tính nhanh số phức rất hay dùng- Trích bài giảng khoá học PRO X tại Vted.vn

>>Xem thêm [Vted.vn] - Công thức giải nhanh Hình phẳng toạ độ Oxy

>>Xem thêm [Vted.vn] - Công thức giải nhanh hình toạ độ Oxyz

>>Xem thêm kiến thức về Cấp số cộng và cấp số nhân

>>Xem thêm Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất

>>Tải về Tổng hợp các công thức lượng giác cần nhớ

>>Sách Khám Phá Tư Duy Kỹ Thuật Giải Bất Đẳng Thức Bài Toán Min- Max

XEM TRỰC TUYẾN

>>Tải về Bài viết Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất

Bình luận

Để bình luận, bạn cần đăng nhập bằng tài khoản Vted.

Đăng nhập
Đã ghim

cho e xin file với ạ 

draekngaocan2007@gmail.com

0
Đã ghim
hngan2k6 [171824]

Cho em xin file với ạ

thailahoangngan586@gmail.com

0
Đã ghim
Nguyễn Nhật Lâm [149550] Đã mua 4 khóa học

cho e xin file với ạ

ln533413@gmail.com 

 

0
Đã ghim
melovevted [135560] Đã mua 3 khóa học

Cho em xin file PDF với ạ. Em cảm ơn nhiều ạ

minhanhhl2k4@gmail.com

0
Vted
Xem tất cả
google.com, pub-1336488906065213, DIRECT, f08c47fec0942fa0