Bài viết này Vted trình bày cho các em một công thức xác định nhanh toạ độ tâm của đường tròn nội tiếp tam giác trong bài toán Hình giải tích không gian Oxyz.
Chú ý với I là tâm nội tiếp tam giác ABC ta có đẳng thức véctơ sau đây:
\[BC.\overrightarrow {IA} + CA.\overrightarrow {IB} + AB.\overrightarrow {IC} = \overrightarrow 0 \]
Chuyển qua toạ độ trong không gian Oxyz, ta có thể xác định được nhanh toạ độ điểm I như sau:
\[\left\{ \begin{gathered} {x_I} = \dfrac{{BC.{x_A} + CA.{x_B} + AB.{x_C}}}{{BC + CA + AB}} \hfill \\ {y_I} = \dfrac{{BC.{y_A} + CA.{y_B} + AB.{y_C}}}{{BC + CA + AB}} \hfill \\ {z_I} = \dfrac{{BC.{z_A} + CA.{z_B} + AB.{z_C}}}{{BC + CA + AB}} \hfill \\ \end{gathered} \right..\]
Ví dụ : Trong không gian với hệ toạ độ $Oxyz,$ cho tam giác $ABC$ với toạ độ các đỉnh $A(1;1;1),B(4;1;1),C(1;1;5).$ Tìm toạ độ điểm $I$ là tâm đường tròn nội tiếp tam giác $ABC.$
A. $I(-2;-1;-2).$
B. $I(2;-1;2).$
C. $I(2;1;2).$
D. $I(1;2;2).$ .
Lời giải. Ta có $BC=5, CA=4, AB=3$.Do đó
\[\left\{ \begin{gathered} {x_I} = \dfrac{{BC.{x_A} + CA.{x_B} + AB.{x_C}}}{{BC + CA + AB}} = \frac{{5.1 + 4.4 + 3.1}}{{5 + 4 + 3}} = 2 \hfill \\ {y_I} = \dfrac{{BC.{y_A} + CA.{y_B} + AB.{y_C}}}{{BC + CA + AB}} = \frac{{5.1 + 4.1 + 3.1}}{{5 + 4 + 3}} = 1 \hfill \\ {z_I} = \dfrac{{BC.{z_A} + CA.{z_B} + AB.{z_C}}}{{BC + CA + AB}} = \frac{{5.1 + 4.1 + 3.5}}{{5 + 4 + 3}} = 2 \hfill \\ \end{gathered} \right..\]
Vậy $\boxed{I(2;1;2){\text{ (C)}}}.$
>>Xem trọn bộ các công thức tính nhanh Hình toạ độ không gian Oxyz tại bài viết này: https://www.vted.vn/tin-tuc/cong-thuc-giai-nhanh-hinh-toa-do-oxyz-bien-soan-thay-dang-thanh-nam-2268.html
Bốn khoá học X trong gói COMBO X 2019 có nội dung hoàn toàn khác nhau và có mục đich bổ trợ cho nhau giúp thí sinh tối đa hoá điểm số.
Quý thầy cô giáo, quý phụ huynh và các em học sinh có thể mua Combo gồm cả 4 khoá học cùng lúc hoặc nhấn vào từng khoá học để mua lẻ từng khoá phù hợp với năng lực và nhu cầu bản thân.
Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho VTED.vn, vui lòng gửi về: