Khối chóp $S.{{A}_{1}}{{A}_{2}}...{{A}_{n}}$ có $S{{A}_{1}}=S{{A}_{2}}=S{{A}_{3}}=k$ thì chân đường cao của khối chóp trùng với tâm đường tròn ngoại tiếp tam giác ${{A}_{1}}{{A}_{2}}{{A}_{3}}.$ Vì vậy chiều cao khối chóp $h=\sqrt{{{k}^{2}}-R_{{{A}_{1}}{{A}_{2}}{{A}_{3}}}^{2}}.$
Khối chóp $S.{{A}_{1}}{{A}_{2}}...{{A}_{n}}$ có $S{{A}_{1}}=S{{A}_{2}}=...=S{{A}_{m}}(3\le m\le n)$ khi đó đa giác ${{A}_{1}}{{A}_{2}}...{{A}_{m}}$ nội tiếp và hình chiếu vuông góc của $S$ lên mặt phẳng đáy trùng với tâm ngoại tiếp của đa giác ${{A}_{1}}{{A}_{2}}...{{A}_{m}}.$
Ví dụ 1: Cho khối lăng trụ $ABC.{A}'{B}'{C}'$ có $AB=a,\text{ }BC=3a,\text{ }CA=\dfrac{5a}{2}.$ Biết ${A}'A={A}'B={A}'C$ và cạnh bên $A{A}'$ tạo với mặt phẳng đáy $\left( ABC \right)$ một góc ${{60}^{0}}.$ Thể tích của khối lăng trụ đã cho bằng
A. $\dfrac{5\sqrt{3}{{a}^{3}}}{2}.$ |
B. $\dfrac{15\sqrt{3}{{a}^{3}}}{2}.$ |
C. $\dfrac{15\sqrt{3}{{a}^{3}}}{8}.$ |
D. $\dfrac{5\sqrt{3}{{a}^{3}}}{8}.$ |
Giải. Vì ${A}'A={A}'B={A}'C$ nên hình chiếu vuông góc của \[{A}'\] xuống mặt phẳng $\left( ABC \right)$ trùng với tâm đường tròn ngoại tiếp $O$ của tam giác $ABC.$
Ta có ${A}'O\bot \left( ABC \right)\Rightarrow \left( A{A}',\left( ABC \right) \right)=\widehat{{A}'AO}={{60}^{0}}\Rightarrow {A}'O=OA\tan {{60}^{0}}={{R}_{ABC}}\sqrt{3}=\dfrac{AB.BC.CA}{4{{S}_{ABC}}}\sqrt{3}$
$\Rightarrow {{V}_{ABC.{A}'{B}'{C}'}}={{S}_{ABC}}.{A}'O=\dfrac{AB.BC.CA}{4}\sqrt{3}=\dfrac{15\sqrt{3}{{a}^{3}}}{8}.$ Chọn đáp án C.
A. $\dfrac{\sqrt{3}}{3}.$
B. $\dfrac{\sqrt{6}}{2}.$
C. $\dfrac{\sqrt{3}}{2}.$
D. $\dfrac{\sqrt{6}}{3}.$
Giải. Tứ giác $ABCD$ có độ dài các cạnh bằng $\sqrt{3}$ nên là một hình thoi có độ dài cạnh bằng $\sqrt{3}.$
Vì $SB=SC=SD=\sqrt{3}$ nên hình chiếu của $S$ lên mặt phẳng $(ABCD)$ trùng với tâm đường tròn ngoại tiếp $H$ của tam giác $BCD.$ Vì tam giác $BCD$ cân tại $C$ nên $H\in AC$ là trung trực của cạnh $BD.$
Gọi $O=AC\cap BD$ chú ý $\Delta SBD=\Delta ABD(c-c-c)\Rightarrow SO=AO\Rightarrow SO=\dfrac{AC}{2}\Rightarrow \Delta SAC$ vuông tại $S.$
Do đó $AC=\sqrt{S{{A}^{2}}+S{{C}^{2}}}=2\Rightarrow SH=\dfrac{SA.SC}{AC}=\dfrac{\sqrt{3}.1}{2}=\dfrac{\sqrt{3}}{2}.$
Ta có $B{{D}^{2}}=4O{{B}^{2}}=4\left( B{{C}^{2}}-O{{C}^{2}} \right)=4B{{C}^{2}}-A{{C}^{2}}=12-4=8\Rightarrow BD=2\sqrt{2}.$
Do đó ${{S}_{ABCD}}=\dfrac{1}{2}AC.BD=\dfrac{1}{2}.2.2\sqrt{2}=2\sqrt{2}\Rightarrow {{V}_{S.ABCD}}=\dfrac{1}{3}{{S}_{ABCD}}.SH=\dfrac{1}{3}.2\sqrt{2}.\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{6}}{3}.$ Chọn đáp án D.
Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho VTED.vn, vui lòng gửi về:
cho em xin bản pdf với ạ bichthuydcmd@gmail.com
Thầy cho chúng em tải về chứ mua khóa học rồi mà cũng như các bạn khác thì khó nghĩ quá