[Vted.vn] - Tổng hợp tất cả các dạng toán Lãi suất kép


Bài viết này Vted giới thiệu và tổng hợp đến bạn đọc tất cả các dạng toán Lãi suất kép thường xuyên xuất hiện trong đề thi THPT Quốc gia các năm gần đây:

Định nghĩa lãi kép: Gửi tiền vào ngân hàng, nếu đến kì hạn người gửi khôngrút lãi ra và số tiền lãi được tính vào vốn để tính lãi cho kì kế tiếp.

Ta cùng xét một số dạng bài toán hay gặp là nền tảng kiến thức để giải quyết các trường hợp riêng như sau:  

Dạng 1: Theo hình thức lãi kép, gửi $a$ đồng, lãi suất $r$ một kì theo hình thức lãi kép. Tính số tiền thu về sau $n$ kì.

Sau kì thứ nhất số tiền thu về ${{A}_{1}}=a+ar=a(1+r).$

Sau kì thứ hai số tiền thu về ${{A}_{2}}={{A}_{1}}(1+r)=a{{(1+r)}^{2}}.$

Sau kì thứ $n$ số tiền thu về ${{A}_{n}}=a{{(1+r)}^{n}}.$

Ta có công thức lãi kép tính tổng số tiền thu về ${{A}_{n}}$ (gồm gốc và lãi) sau $n$ kì là

                                                         \[{{A}_{n}}=a{{(1+r)}^{n}},\]

trong đó $a$ là số tiền gốc gửi vào đầu kì và $r$ là lãi suất.

Từ công thức trên ta suy ra các công thức liên hệ:

  • Số tiền lãi thu về sau $n$ kì là ${{L}_{n}}=a{{(1+r)}^{n}}-a=a[{{(1+r)}^{n}}-1]$ (đồng).
  • Số tiền gửi ban đầu $a=\dfrac{{{A}_{n}}}{{{(1+r)}^{n}}}$ (đồng).
  • Lấy logarit hai vế, ta được: $n={{\log }_{1+r}}\dfrac{{{A}_{n}}}{a}(*).$

Công thức (*) cho thấy để tổng số tiền thu về sau $n$ kì ít nhất là ${{A}_{n}}$ thì phải sau ít nhất $n={{\log }_{1+r}}\dfrac{{{A}_{n}}}{a}$ kì gửi.

Trong thực tế, khi ${{\log }_{1+r}}\frac{{{A}_{n}}}{a}$ nguyên thì $n={{\log }_{1+r}}\dfrac{{{A}_{n}}}{a},$ khi ${{\log }_{1+r}}\dfrac{{{A}_{n}}}{a}$ lẻ thì $n=\left[ {{\log }_{1+r}}\dfrac{{{A}_{n}}}{a} \right]+1.$

Ví dụ 1.Theo hình thức lãi kép, một người gửi vào ngân hàng 10 triệu đồng, lãi suất theo kì hạn 1 năm là 6% thì sau 2 năm người này thu về số tiền là ?

A. 11,236 (triệu đồng).

B. 11 (triệu đồng).

C. 12,236 (triệu đồng).

D. 11,764 (triệu đồng).

Giải. Số tiền thu về sau 2 năm là

                                         \[10.{{(1+0,06)}^{2}}\approx 11,236\] (triệu đồng).

Chọn đáp án A.

  • Số tiền lãi là $11,236-10=1,236$ (triệu đồng).

 

Ví dụ 2.Theo hình thức lãi kép, một người gửi vào ngân hàng 10 triệu đồng, lãi suất theo kì hạn 1 tháng là 0,5% thì sau 2 năm người này thu về số tiền lãi là ?

A. 11,272 (triệu đồng).

B. 10,617 (triệu đồng).

C. 1,272 (triệu đồng).

D. 0,617 (triệu đồng).

Giải. Tổng số tiền người này thu về là

                                       \[10.{{(1+0,005)}^{24}}\approx 11,272\] (triệu đồng).

  • Số tiền lãi thu về là $11,272-10=1,272$ (triệu đồng).

Chọn đáp án C.

Ví dụ 3.Theo hình thức lãi kép, một người gửi vào ngân hàng 15 triệu đồng, lãi suất theo kì hạn 1 năm là 6%. Hỏi sau ít nhất bao nhiêu năm thì số tiền người này thu về ít nhất là 19 triệu đồng ?

A. 4 năm.

B. 6 năm.

C. 3 năm.

D. 5 năm.

Giải. Số tiền người này thu về sau $n$ năm là $15.{{(1+0,06)}^{n}}$ (triệu đồng).

Theo giả thiết, ta có

      $15.{{(1+0,06)}^{n}}\ge 19\Leftrightarrow n\ge {{\log }_{1,06}}\frac{19}{15}\approx 4,057.$

Vậy sau ít nhất 5 năm thì số tiền người này thu về là ít nhất 19 triệu đồng.

Chọn đáp án D.

Dạng 2:Theo hình thức lãi kép, đầu mỗi kì gửi $a$ đồng, lãi suất $r$ một kì. Tính số tiền thu được sau $n$ kì (gồm cả gốc và lãi)

Số tiền thu về sau kì thứ nhất là ${{A}_{1}}=a(1+r).$

Số tiền thu về sau kì thứ hai là ${{A}_{2}}=a(1+r)+a{{(1+r)}^{2}}.$

Số tiền thu về sau $n$ kì là ${{A}_{n}}=a(1+r)+a{{(1+r)}^{2}}+...+a{{(1+r)}^{n}}.$

Áp dụng công thức tính tổng riêng thứ $n$ của cấp số nhân với số hạng đầu và công bội $\left\{ \begin{align}

  & {{u}_{1}}=a(1+r) \\

 & q=1+r \\

\end{align} \right.$, ta có

           \[{{A}_{n}}={{u}_{1}}.\frac{{{q}^{n}}-1}{q-1}=a(1+r).\frac{{{(1+r)}^{n}}-1}{r}.\]

tổng số tiền lãi nhận được: ${{L}_{n}}={{A}_{n}}-na=a(1+r).\frac{{{(1+r)}^{n}}-1}{r}-na$ (đồng).

Từ đây ta có các công thức liên hệ khác tuỳ thuộc vào yêu cầu bài toán:

Số tiền gửi đều đặn đầu mỗi kì là $a=\frac{{{A}_{n}}r}{(1+r)[{{(1+r)}^{n}}-1]}$(đồng).

Số kì gửi là \[n={{\log }_{1+r}}\left[ \frac{{{A}_{n}}r}{a(1+r)}+1 \right].\]

*Chú ý.Ta nên quan niệm số tiền thu về là số tiền thu về của $n$ khoản gửi, mỗi khoảng $a$ đồng với kì hạn gửi tương ứng là $n,n-1,...,1$ khi đó số tiền thu về theo công thức lãi kép là

    \[{{A}_{n}}=a{{(1+r)}^{n}}+a{{(1+r)}^{n-1}}+...+a(1+r)=a(1+r).\frac{{{(1+r)}^{n}}-1}{r}.\]

Ví dụ 1.Theo hình thức lãi kép, đầu mỗi tháng một người gửi đều đặn vào ngân hàng cùng một số tiền 10 triệu đồng, lãi suất theo kì hạn 1 tháng là 0,5% thì sau 2 năm số tiền người này thu về (cả gốc và lãi) là ?

A.255,591 (triệu đồng).

C.254,591 (triệu đồng).

B.254,320 (triệu đồng).

D.255,320 (triệu đồng).

Giải.Số tiền người này thu về sau 2 năm là

\[10{{(1+0,005)}^{24}}+10{{(1+0,005)}^{23}}+...+10{{(1+0,005)}^{1}}=10(1+0,005).\frac{{{(1+0,005)}^{24}}-1}{0,005}\approx 255,591\] (triệu đồng). Chọn đáp án A.

Ví dụ 2.Theo hình thức lãi kép, đầu mỗi tháng một người gửi đều đặn vào ngân hàng cùng một số tiền $m$ (triệu đồng), lãi suất theo kì hạn 1 tháng là 0,5% thì sau 2 năm số tiền người này thu về (cả gốc và lãi) là 100 (triệu đồng). Tính số tiền $m.$

A. \[m=\frac{100}{201\left[ {{(1,005)}^{24}}-1 \right]}\] (triệu đồng).

C. \[m=\frac{1}{2\left[ {{(1,005)}^{24}}-1 \right]}\] (triệu đồng).

B. \[m=\frac{100}{201\left[ {{(1,005)}^{25}}-1 \right]}\] (triệu đồng).

D. \[m=\frac{1}{2\left[ {{(1,005)}^{25}}-1 \right]}\] (triệu đồng).

Giải.Số tiền người này thu về sau 2 năm là

\[m{{(1+0,005)}^{24}}+m{{(1+0,005)}^{23}}+...+m{{(1+0,005)}^{1}}=m(1+0,005).\frac{{{(1+0,005)}^{24}}-1}{0,005}.\]

Theo giả thiết, ta có

\[m(1+0,005).\frac{{{(1+0,005)}^{24}}-1}{0,005}=100\Leftrightarrow m=\frac{100}{201\left[ {{(1,005)}^{24}}-1 \right]}\] (triệu đồng).

Chọn đáp án A.

Dạng 3:Theo hình thức lãi kép, vay $A$ đồng, lãi suất $r,$ trả nợ đều đặn mỗi kì số tiền $m$ đồng. Hỏi sau bao nhiêu kì thì trả hết số nợ gồm cả gốc và lãi ?

Gọi $m$ là số tiền trả đều đặn mỗi kì.

Sau kì thứ nhất số tiền còn phải trả là ${{A}_{1}}=A(1+r)-m.$

Sau kì thứ hai số tiền còn phải trả là

${{A}_{2}}={{A}_{1}}(1+r)-m=\left[ A(1+r)-m \right](1+r)-m=A{{(1+r)}^{2}}-\left[ m+m(1+r) \right].$

Sau kì thứ n số tiền còn phải trả là

                  \[{{A}_{n}}=A{{(1+r)}^{n}}-\left[ m+m(1+r)+...+m{{(1+r)}^{n-1}} \right].\]

Theo công thức tổng riêng thứ $n$ của một cấp số nhân, ta có

                                \[{{A}_{n}}=A{{(1+r)}^{n}}-m\frac{{{(1+r)}^{n}}-1}{r}.\]

Sau kì thứ $n$ trả hết nợ nên ${{A}_{n}}=0,$ do đó

\[A{{(1+r)}^{n}}-m\frac{{{(1+r)}^{n}}-1}{r}=0\Leftrightarrow m=\frac{Ar{{(1+r)}^{n}}}{{{(1+r)}^{n}}-1}\] (đồng).

Từ công thức trên ta có các công thức liên hệ:

  • Số tiền vay gốc là $A=\frac{m\left[ {{(1+r)}^{n}}-1 \right]}{r{{(1+r)}^{n}}}$ (triệu đồng).
  • Lấy logarit hai vế, ta có \[n={{\log }_{1+r}}\frac{m}{m-Ar}.\]

 

Ví dụ 1.Theo hình thức lãi kép, một người vay ngân hàng 100 triệu đồng, lãi suất theo kì hạn 1 tháng là 1%. Người này trả nợ đều đặn cho ngân hàng mỗi tháng cùng một số tiền $m$ triệu đồng. Sau đúng một năm thì người này trả hết nợ. Tính số tiền $m.$

A. \[m=\frac{100\times {{(1,01)}^{12}}}{12}\] (triệu đồng).

C. \[m=\frac{{{(1,01)}^{12}}}{{{(1,01)}^{12}}-1}\] (triệu đồng).

B. \[m=\frac{10\times {{(1,1)}^{12}}}{{{(1,1)}^{12}}-1}\] (triệu đồng).

D. \[m=\frac{10\times {{(1,01)}^{12}}}{{{(1,01)}^{12}}-1}\] (triệu đồng).

Giải.

Số tiền còn phải trả sau tháng thứ nhất là ${{A}_{1}}=100(1+0,01)-m.$

Số tiền còn phải trả sau tháng thứ hai là ${{A}_{2}}={{A}_{1}}(1+0,01)-m=100{{(1+0,01)}^{2}}-m-m(1+0,01).$

Số tiền còn phải trả sau tháng thứ 12 là ${{A}_{12}}=100{{(1+0,01)}^{12}}-\left[ m+m(1+0,01)+...+m{{(1+0,01)}^{11}} \right].$

Theo công thức tổng riêng của cấp số nhân, ta có

                   \[{{A}_{12}}=100{{(1+0,01)}^{12}}-m.\frac{{{(1+0,01)}^{12}}-1}{0,01}.\]

Sau tháng 12 người này trả hết nợ nên ${{A}_{12}}=0,$ do đó

\[100{{(1+0,01)}^{12}}-m.\frac{{{(1+0,01)}^{12}}-1}{0,01}=0\Leftrightarrow m=\frac{100\times 0,01\times {{(1+0,01)}^{12}}}{{{(1+0,01)}^{12}}-1}=\frac{{{(1,01)}^{12}}}{{{(1,01)}^{12}}-1}\] (triệu đồng).

Chọn đáp án C.

CÁC DẠNG TOÁN NÂNG CAO VỀ LÃI KÉP BẠN ĐỌC THAM KHẢO TẠI KHOÁ HỌC COMBO X 2019

TẢI VỀ BÀI TẬP LÃI SUẤT KÉP

Gồm 4 khoá luyện thi duy nhất và đầy đủ nhất phù hợp với nhu cầu và năng lực của từng đối tượng thí sinh:

  1. PRO X 2019: Luyện thi THPT Quốc Gia 2019 - Học toàn bộ chương trình Toán 12, luyện nâng cao Toán 10 Toán 11 và Toán 12. Khoá này phù hợp với tất cả các em học sinh vừa bắt đầu lên lớp 12 hoặc lớp 11 học sớm chương trình 12, đều có thể theo học khoá này. Mục tiêu của khoá học giúp các em tự tin đạt kết quả từ 8 đến 9 điểm. 
  2. PRO XMAX 2019: Luyện nâng cao 9 đến 10 chỉ dành cho học sinh giỏi Học qua bài giảng và làm đề thi nhóm câu hỏi Vận dụng cao trong đề thi THPT Quốc Gia thuộc tất cả chủ đề đã có trong khoá PRO X. Khoá PRO XMAX học hiệu quả nhất khi các em đã hoàn thành chương trình 12 có trong Khoá PRO X. Mục tiêu của khoá học giúp các em tự tin đạt kết quả từ 8,5 đếm 10 điểm.
  3. PRO XPLUS 2019: Luyện đề thi tham khảo THPT Quốc Gia 2019 Môn Toán gồm 20 đề 2019. Khoá này các em học đạt hiệu quả tốt nhất khoảng thời gian sau tết âm lịch và cơ bản hoàn thành chương trình Toán 12 và Toán 11 trong khoá PRO X. Khoá XPLUS tại Vted đã được khẳng định qua các năm gần đây khi đề thi được đánh giá ra rất sát so với đề thi chính thức của BGD. Khi học tại Vted nếu không tham gia XPLUS thì quả thực đáng tiếc. 
  4. PRO XMIN 2019: Luyện đề thi tham khảo THPT Quốc Gia 2019 Môn Toán từ các trường THPT Chuyên và Sở giáo dục đào tạo, gồm các đề chọn lọc sát với cấu trúc của bộ công bố. Khoá này bổ trợ cho khoá PRO XPLUS, với nhu cầu cần luyện thêm đề hay và sát cấu trúc.  

Quý thầy cô giáo, quý phụ huynh và các em học sinh có thể mua Combo gồm cả 4 khoá học cùng lúc hoặc nhấn vào từng khoá học để mua lẻ từng khoá phù hợp với năng lực và nhu cầu bản thân. 

>>Xem thêm Tổng hợp các công thức tính nhanh số phức rất hay dùng- Trích bài giảng khoá học PRO X tại Vted.vn

>>Xem thêm [Vted.vn] - Công thức giải nhanh Hình phẳng toạ độ Oxy

>>Xem thêm [Vted.vn] - Công thức giải nhanh hình toạ độ Oxyz

>>Xem thêm kiến thức về Cấp số cộng và cấp số nhân

>>Xem thêm Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất

>>Tải về Tổng hợp các công thức lượng giác cần nhớ

>>Sách Khám Phá Tư Duy Kỹ Thuật Giải Bất Đẳng Thức Bài Toán Min- Max

TẢI VỀ BÀI TẬP LÃI SUẤT KÉP

Bình luận

Để bình luận, bạn cần đăng nhập bằng tài khoản Vted.

Đăng nhập
Vted
Xem tất cả