A. $\dfrac{1}{3}.$ |
B. $\dfrac{5}{6}.$ |
C. $\dfrac{1}{6}.$ |
D. $\dfrac{4}{9}.$ |
Giải chi tiết. Có tất cả ${{6}^{5}}$ số tự nhiên gồm 5 chữ số thành lập từ tập $X\Rightarrow n(\Omega )={{6}^{5}}.$
Giả sử số chọn được thoả mãn $\overline {{a_1}{a_2}{a_3}{a_4}{a_5}} = 6m \Rightarrow \left\{ \begin{gathered} {a_5} \in \left\{ {2,4,6} \right\} \hfill \\ {a_1} + {a_2} + {a_3} + {a_4} + {a_5} = 3n \hfill \\ \end{gathered} \right..$
+ ${{a}_{5}}$ có 3 cách.
+ mỗi số ${{a}_{1}},{{a}_{2}},{{a}_{3}}$ có 6 cách.
- Nếu ${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{5}}=3p\Rightarrow {{a}_{4}}\in \left\{ 3,6 \right\}$ có 2 cách.
- Nếu ${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{5}}=3p+1\Rightarrow {{a}_{4}}\in \left\{ 2,5 \right\}$ có 2 cách.
- Nếu ${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{5}}=3p+2\Rightarrow {{a}_{4}}\in \left\{ 1,4 \right\}$ có 2 cách.
Vậy là với mọi trường hợp đã chọn xong các chữ số ${{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{5}}$ thì ${{a}_{4}}$ luôn có 2 cách.
Vậy có tất cả $3\times {{6}^{3}}\times 2$ cách chọn ra được số thoả mãn. Xác suất bằng $\dfrac{3\times {{6}^{3}}\times 2}{{{6}^{5}}}=\dfrac{1}{6}.$ Chọn đáp án C.
Chia hết cho |
Điều kiện chia hết |
2 |
Chữ số tận cùng (hàng đơn vị) là chẵn (0, 2, 4, 6, hay 8). |
3 hoặc 9 |
Số chia hết cho 3 (hoặc 9) khi tổng các chữ số của nó chia hết cho 3 (hoặc 9). VD: 2025 chia hết cho 3 vì 2+0+2+5=9 chia hết cho 3 VD: 2880 chia hết cho 9 vì 2+8+8+0=18 chia hết cho 9. |
4 |
Hai chữ số tận cùng của nó là một số chia hết cho 4. VD: 00, 04, 08, 24, 32,… |
5 |
Chữ số tận cùng là 0 hoặc 5. |
6 |
Số đó chia hết cho cả 2 và 3. |
7 |
Tổng đan dấu từng nhóm ba chữ số của nó từ phải qua trái là một số chia hết cho 7. VD: 1369851 chia hết cho 7 vì 851 − 369 + 1 = 483 = 7 × 69. |
8 |
Ba chữ số tận cùng của nó là một số chia hết cho 8. VD: 008, 016, 640,… |
10 |
Chữ số hàng đơn vị là 0. |
11 |
Tổng đan dấu các chữ số của nó là một số chia hết cho 11 tức $N=\overline{{{a}_{1}}{{a}_{2}}...{{a}_{n}}}\vdots 11$ thì điều kiện là ${{a}_{1}}-{{a}_{2}}+{{a}_{3}}-...+{{\left( -1 \right)}^{n-1}}{{a}_{n}}\vdots 11.$ VD: 918082 chia hết cho 11 vì 9-1+8-0+8-2=22 chia hết cho 11. |
12 |
Số đó chia hết cho cả 3 và 4. |
13 |
Tổng đan dấu từng nhóm ba chữ số của nó từ phải qua trái là một số chia hết cho 13. VD: 2911272 chia hết cho 13 vì 272 − 911 + 2 = −637 chia hết cho 13. |
14 |
Số đó chia hết cho cả 2 và 7. |
15 18 21 22 24 26 28 30 |
Số đó chia hết cho cả 3 và 5. Số đó chia hết cho cả 2 và 9. Số đó chia hết cho cả 3 và 7. Số đó chia hết cho cả 2 và 11. Số đó chia hết cho cả 3 và 8. Số đó chia hết cho cả 2 và 13. Số đó chia hết cho cả 4 và 7. Số đó chia hết cho cả 3 và 10. |
16 |
Bốn chữ số tận cùng của nó là một số chia hết cho 16. VD: 157648 chia hết cho 16 vì 7648 = 478 × 16. |
20 hoặc 25 |
Hai chữ số tận cùng của nó là một số chia hết cho 20 (hoặc 25). |
Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho VTED.vn, vui lòng gửi về: